Rutile-Type Compounds. V. Refinement of $\mathbf{M n O}_{\mathbf{2}}$ and $\mathbf{M g F}_{\mathbf{2}}$

By Werner H. Baur
Department of Geological Sciences, University of Illinois, Chicago, Illinois 60680, U.S.A.

(Received 14 July 1975; accepted 26 January 1976)

Abstract

Single-crystal X-ray diffraction data (computer-controlled four-circle diffractometer) on rutile-type MnO_{2} have been refined with anisotropic temperature factors to $R=0.014$ (295 F_{o}). Result: $x=0.30515$ (11), $(\mathrm{Mn}-\mathrm{O})_{1}=1.8795 \AA$ and ($\left.\mathrm{Mn}-\mathrm{O}\right)_{2}=1.8981 \AA$ [with $a=4.3983$ (3) and $c=2 \cdot 8730$ (3) \AA]. Singlecrystal data of Niederauer \& Göttlicher [Z. angew. Phys. (1970), 29, 16] have been refined with anisotropic temperature factors to $R=0.016\left(190 F_{o}\right)$. Result: $x=0.30293(6)$, $(\mathrm{Mg}-\mathrm{F})_{1}=1.9968$ and $(\mathrm{Mg}-\mathrm{F})_{2}=$ $1.9798 \AA$ [with $a=4.6213$ (1) and $c=3.0519$ (1) \AA]. Rutile-type fluorides of the first transition-metal series conform to a simple ionic model and have within the coordination octahedra apical bonds which are shorter than the equatorial bonds (apically compressed octahedra). Deviations of individual compounds from the normal geometry are consistent with static Jahn-Teller distortions due to degeneracies in e_{g} orbitals $\left(\mathrm{CrF}_{2}\right.$ and CuF_{2}) and in $t_{2 g}$ orbitals (FeF_{2} and CoF_{2}). The main Group IV rutile-type oxides $\left(\mathrm{SiO}_{2}, \mathrm{GeO}_{2}, \mathrm{SnO}_{2}\right.$ and PbO_{2}) have apically elongated octahedra which are not compatible with an ionic model. VO_{2} and CrO_{2} deviate from the oxide rutile-type geometry in a manner not consistent with Jahn-Teller distortions of ions with unfilled $t_{2 g}$ orbitals.

Introduction

When I refined the crystal structures of rutile-type $\mathrm{TiO}_{2}, \mathrm{SnO}_{2}, \mathrm{GeO}_{2}$ and MgF_{2} (Baur, 1956) I also attempted to study rutile-type MnO_{2} (pyrolusite). However, the samples of pyrolusite then available to me were either other modifications of MnO_{2} or else they were polycrystalline or finely twinned or very poorly crystallized. Attempts to grow single crystals of MnO_{2} failed. A precise evaluation of the powder diffraction data was unsuccessful because of the diffuse background in the patterns taken with $\mathrm{Cu} K \alpha$ or $\mathrm{Fe} K \alpha$ radiation or because of the poor resolution achieved with Mo $K \alpha$ radiation. Therefore Brenet's (1950) semiquantitative determination of the O atom position in rutile-type MnO_{2} is still the most precise work on pyrolusite. Brenet found a positional parameter x of the O atom of 0.303 , which would mean that all the $\mathrm{Mn}-\mathrm{O}$ distances within the coordination octahedron of O atoms around Mn should be of equal length. However, he also mentions that for $x=0.310$ the agreement between F_{o} and F_{c} would be even better. In this case the two apical $\mathrm{Mn}-\mathrm{O}$ bonds would be longer than the four equatorial bonds (apically elongated) thus resulting in the same type of distortion as is observed in $\mathrm{TiO}_{2}, \mathrm{SiO}_{2}, \mathrm{GeO}_{2}, \mathrm{SnO}_{2}$, and PbO_{2}, while in rutile-type fluorides and in $\mathrm{CrO}_{2}, \mathrm{RuO}_{2}$, and OsO_{2} the four equatorial bonds are longer than the two apical bonds (Baur, 1956; Baur \& Khan, 1971). Abrahams \& Bernstein (1971) pointed out that the compounds with apically elongated bonds contained all Group IV oxides crystallizing in the rutile-type. If this observation indicates a general rule we would expect the coordination octahedron in MnO_{2} to be distorted in the opposite sense compared with the dis-
tortion found in Group IV rutile-type oxides, that is the O atom in MnO_{2} should have an x smaller than 0.303 (in contradiction to Brenet's observation). Since Rogers, Shannon, Sleight \& Gillson (1969) have grown hydrothermally single crystals of rutile-type MnO_{2} this question can now be settled by an accurate X-ray study of these crystals.

The crystal structure of rutile-type MgF_{2} was refined from two-dimensional single-crystal X-ray data by difference syntheses (Baur, 1956) and the same data were subsequently re-refined by least-squares techniques (Baur \& Khan, 1971). The positional parameters for the F atom were found to be $x=$ 0.303 (1) and $x=0.3028$ (6), respectively. Recently Niederauer \& Göttlicher (1970) determined the elec-tron-density distribution in MgF_{2}. They measured and evaluated a precise set of structure factors but did not attempt to refine the positional parameter of the F atom. Instead they used the value of $x=0.303$ (1) determined by Baur (1956) for their calculations. Their set of X-ray data has been refined here to yield a precise definition of the structural geometry of MgF_{2}.

Experimental

Vegard (1916) has shown that rutile-type compounds crystallize in space group $P 4_{2} / m 2_{1} / n 2 / m$ (systematic absences $0 k l$ if $k+l=2 n+1$, and the symmetrically related $h 0 l$ if $h+l=2 n+1$). The metal atoms occupy equipoints $2(a)$ with site symmetry $m m m$, the anions are in equiponts $4(f)$ at $\pm\left(x, x, 0 ; \frac{1}{2}+x, \frac{1}{2}-x, \frac{1}{2}\right)$ (site symmetry mm). The structure has three free parameters: two cell constants and the parameter x.

Crystals of MnO_{2} were prepared hydrothermally at $700^{\circ} \mathrm{C}$ and 3000 atm by Rogers et al. (1969). An
almost perfect sphere of diameter $0.015 \pm 0.001 \mathrm{~cm}$ was ground from the material made available by Dr R. D. Shannon. Three-dimensional X-ray intensities within a complete sphere of reflection were collected on a computer-controlled four-circle diffractometer using monochromatic $\mathrm{Ag} K \alpha$ radiation (graphite crystal monochromator). For details of data-measuring procedures and for a list of computer programs used in the course of the work see Table 1 and Baur \& Khan (1970). The structure amplitudes were corrected for absorption. The data were only slightly affected by extinction since the refinement of the extinction parameter (Zachariasen, 1963) reduced R only by 0.003 ($C=0.45 \times 10^{-6}$) to 0.0144 . The scattering factors of Mn^{2+} and O^{-}used for the calculation of structure

Fig. 1. Axial ratio c/a versus positional parameter x for all rutile-type compounds for which they have been determined so far (Table 6). The lengths of the vertical bars of the crosses indicate the estimated standard deviations of x. The dashed line corresponds to those $x, c / a$ values for which $(\mathrm{A}-\mathrm{B})_{1}=(\mathrm{A}-\mathrm{B})_{2}$. If a compound is located above the line the coordination octahedron is axially compressed.
factors (see Table 2* for F_{o} and F_{c}) were taken from International Tables for X-ray Crystallography (1962).

Niederauer \& Göttlicher's (1970) structure factors for MgF_{2} were processed in the same way as the structure factors for MnO_{2} resulting in a final R of 0.0155 . Scattering factors of Mg^{2+} and F by Doyle \& Turner (1968) were used in the structure-factor calculations (see Table 3* for F_{o} and F_{c}).

The positional parameter $x_{\text {exp }}$ of the O atom in MnO_{2} is greater than the value of x_{m} (Table 4). Therefore, the distortion of the coordination octahedron around Mn is of the same type as in $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}$ and GeO_{2}. The equatorial bonds are about $0.02 \AA$ shorter than the apical bonds. Thus MnO_{2} shows the same type of distortion as the Group IV oxides. The geometry of the coordination polyhedron in MgF_{2} has not been changed by the new refinement compared with the old work (Baur, 1956; Baur \& Khan, 1971). The thermal ellipsoids in MgF_{2} are almost spherical (Table 5). The only other rutile-type structure where this is true is SiO_{2} (Baur \& Khan, 1971), which however has not been determined with the same degree of accuracy as MgF_{2}.

Discussion

In the rutile-type structure the anions form coordination octahedra around the cations. These octahedra join into chains parallel to [001] by sharing edges. The chains are connected sideways to four neighboring chains by sharing corners. Every anion is coordinated by three cations. The site symmetry of the cation (mmm) allows deviations from the maximum symmetry $(4 / m \overline{3} 2 / m)$ of an octahedron. In well determined rutile-type structures two types of distortion have been

[^0]Table 1. Crystal data, details of data collection and R values

Space group	$\begin{gathered} \mathrm{MnO}_{2} \\ P 4_{2} / m 2_{1} / n 2 / m \end{gathered}$	$\begin{gathered} \mathrm{MgF}_{2} \\ P 4_{2} / m 2_{1} / n 2 / m \end{gathered}$
$a(\AA)$	4.3983 (3) ${ }^{\text {a }}$	$4 \cdot 6213$ (1) ${ }^{\text {b }}$
$c(\AA)$	$2 \cdot 8730$ (3) ${ }^{\text {a }}$	3.0519 (1) ${ }^{\text {b }}$
$V\left(\AA^{3}\right)$	$55 \cdot 58$	$65 \cdot 18$
Z	2	2
F.W.	86.94	62.31
$\lambda(\AA)$	Ag K $\alpha, 0.56083$	Mo K $\alpha, 0.71069$
$\mu\left(\mathrm{cm}^{-1}\right)$	59.5	$7.46{ }^{\text {c }}$
$D_{x}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	$5 \cdot 193$	$3 \cdot 174$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	$1 \cdot 37$	1.00
Number of $I_{h k 1}$ measured	4267	$190^{\text {c }}$
Number of unique $I_{\text {hkl }}$	352	$190^{\text {c }}$
Number of unobserved reflections	57	0
$R_{1}=\Sigma\| \| F_{0}\left\|-\left\|F_{c}\right\|\right\| / \sum\left\|F_{o}\right\|$	$0.0144^{\text {d }}$	$0.0155^{\text {d }}$
$R_{2}=\left[\sum w\left(F_{o}-F_{c}\right)^{2} / \sum w F_{o}^{2}\right]^{1 / 2}$	$0.0243^{\text {d }}$	$0.0440{ }^{\text {d }}$
R_{1} (including $F_{n k l}=0$)	$0 \cdot 0277$	

(a) Shannon, private communication. (b) Naidu (1960). (c) Niederauer \& Göttlicher (1970). (d) Excluding $F_{h k l}=0$.

Table 4. Refinement results, bond lengths and bond angles for MnO_{2} and MgF_{2}

The value of $x_{\text {exp }}$ is the experimentally determined positional parameter of the anion B, while x_{m} is the calculated value assuming that the six cation-anion distances ($\mathrm{A}-\mathrm{B}$) are of equal length, that is $x=\frac{1}{4}+\left(c^{2} / 8 a^{2}\right)$. Listed are the $\beta_{i j}\left(\times 10^{4}\right)$ where the temperature factor is $\exp \left[-\left(\beta_{11}\left(h^{2}+k^{2}\right)+\beta_{33} l^{2}+2 \beta_{12} h k\right)\right]$. The multiplicities refer to one coordination octahedron. The mean cation-anion distance $(\mathrm{A}-\mathrm{B})_{m}$ is calculated with x_{m} as parameter.

	MnO_{2}	MgF_{2}
c/a	$0 \cdot 65321$	0.66040
$x_{\text {m }}$	0.3033	0.3045
$x_{\text {exp }}$	$0 \cdot 30515$ (11)	$0 \cdot 30293$ (6)
β_{11}, anion	63 (1)	96 (2)
β_{33}, anion	98 (3)	215 (4)
β_{12}, anion	-24 (2)	0 (1)
β_{11}, cation	38 (1)	71 (1)
β_{33}, cation	76 (1)	158 (4)
β_{12}, cation	1 (1)	0 (1)
(A-B) ${ }_{1}$, equatorial ($4 \times$)	1.8795 (2) \AA	1.9968 (1) \AA A
(A-B) 2 , apical ($2 \times$)	$1 \cdot 8981$ (3)	1.9798 (2)
(A-B) ${ }_{\text {m }}$	1.8868	1.9902
(B-B) ${ }_{1}(8 \times$)	$2 \cdot 6712$ (2)	$2 \cdot 8819$ (1)
(B-B) 2 ($2 \times$)	$2 \cdot 4240$ (7)	$2 \cdot 5759$ (4)
$(\mathrm{A}-\mathrm{A})_{1}=(\mathrm{B}-\mathrm{B})_{3}=c(2 \times)$	$2 \cdot 8730$ (3)	3.0519 (1)
$(\mathrm{A}-\mathrm{A})_{2}(8 \times$)	$3 \cdot 4258$ (2)	$3 \cdot 6065$ (1)
$(\mathrm{B}-\mathrm{A}-\mathrm{B})_{1}(2 \times$)	$80 \cdot 31$ (2) ${ }^{\circ}$	$80 \cdot 33$ (1) ${ }^{\circ}$

observed: (a) The angle anion-cation-anion towards the shared anion-anion edge varies from 75.0 to $84 \cdot 2^{\circ}$ (see Table 6). (b) The apical distances cationanion can be different and usually are different in length from the four equatorial distances cation-anion within the plane (110) normal to the apical distances. The distortion of the coordination octahedra is a function of two parameters: the ratio c / a of the cell constants, and the free parameter x of the anion. In Fig. 1 all data for rutile-type oxides and fluorides are entered for which both x and c / a have been experimentally determined.
Simple Born-model type calculations, which took into account the electrostatic part of the lattice energy as well as non-electrostatic repulsion terms showed that according to this electrostatic model we should expect, in rutile-type crystals, the four equatorial (A-B) $)_{1}$ bonds to be always longer than the two apical
(A-B) ${ }_{2}$ bonds (Baur, 1961). We see in Fig. 1 that most fluorides conform with this, while most oxides do not. This is reasonable since fluorine is the most electronegative of the elements. However, we cannot accept this agreement as proof of the ionic character of these fluorides since it could be fortuitous. But the disagreement for the oxides in which the equatorial cationoxygen bonds are shorter than the apical bonds must be taken as a strong indication that they are, at least partly, covalent: a simple ionic model cannot account for this observation.

The x values for the different rutile-type compounds tend to increase as c / a increases (Fig. 1). By and large both x and c / a increase with increasing mean distance A-B (Fig. 2); this is true for the fluorides (except for FeF_{2}) and for the main elements of the fourth group. These trends have been interpreted using the ionic model, by the smaller influence of the non-electrostatic terms on the total lattice energy with increasing A-B distance (Baur, 1961). The transiton-metal oxides

Fig. 2. Axial ratio c/a versus mean cation-anion distance (A-B) ${ }_{m}$ for 18 rutile-type compounds (Table 6). The dashed line connects the main Group IV oxides.

Table 5. Dimensions and orientations of the ellipsoids of thermal vibration of the atoms in MnO_{2} and MgF_{2}

Compound	$\begin{aligned} & \text { Atom } \\ & \text { Mn } \end{aligned}$	$\underset{\text { axis }}{\text { Principal }}$	$\begin{gathered} \text { R.m.s. } \\ \text { component }(\AA) \end{gathered}$	Angle $\left({ }^{\circ}\right)$ between principal axes and vectors a,b,c, $(A-B)_{1}$ and $(A-B)_{2}$				
				a	b	c	(A-B) ${ }_{1}$	$(\mathrm{A}-\mathrm{B})_{2}$
		1	0.056 (1)	90	90	0		
		2	0.060 (1)	135	45	90		
MgF_{2}	0	3	0.062 (1)	45	45	90		
		1	$0 \cdot 062$ (1)	45	45	90	$130 \cdot 15$	0
		2	0.064 (1)	90	90	180	$40 \cdot 15$	90
	Mg	3	0.092 (1)	45	135	90	90.00	90
		1	0.086 (1)	90	90	0		
		2	0.087 (1)	135	135	90		
	F	3	0.088 (1)	45	135	90		
		1	$0 \cdot 101$ (1)	90	90	0	139.83	90
		2	$0 \cdot 102$ (1)	135	135	90	49.83	180
		3	$0 \cdot 102$ (1)	45	135	90	90.00	90

(except for MnO_{2}) do not follow these trends. It is possible that the asymmetries of the distribution of the d electrons over their orbitals are causing these slightly irregular geometries of the transition-metal rutile-type oxides. The apically compressed octahedron around $\mathrm{Mn}(1)$ in $\mathrm{DyMn}_{2} \mathrm{O}_{5}$ (Abrahams \& Bernstein, 1967) is compressed because $\mathrm{O}(3)$ is underbonded compared with the other ligands of $\mathrm{Mn}(1)$. The distortions of the

Fig. 3. Equatorial (solid line) and apical (dashed line) bond lengths of the rutile-type fluorides of the first transitionmetal series as a function of the number of d electrons. Data for CrF_{2} are from Jack \& Maitland (1957), for CuF_{2} from Billy \& Haendler (1957).
coordination octahedra in rutile-type crystals are not a consequence of unequal bond-strength distributions (Baur, 1970) as they are found in more complicated structures and this is precisely the reason why they are of interest.

Static Jahn-Teller effects are pronounced when partially filled e_{g} orbitals are involved. In the series of fluorides of the first transition series $\mathrm{CrF}_{2}\left(d^{4}\right)$ and $\mathrm{CuF}_{2}\left(d^{9}\right)$ display strong distortions (and are monoclinic rather than tetragonal). According to Dunitz \& Orgel (1960) partially filled $t_{2 g}$ orbitals should result in slight distortions compared with the high-spin d^{4} and d^{9} arrangements. Specifically they are predicting that in high-spin d^{1} and d^{0} configurations the coordination octahedron should be axially compressed, while in d^{2} and d^{7} configurations it should be elongated. As a possible example of the former they cite the case of $\mathrm{FeF}_{2}\left(d^{6}\right)$ where the equatorial $\mathrm{Fe}-\mathrm{F}$ bond lengths are $2 \cdot 118 \AA$ and the apical bonds measure $1.998 \AA$. However, they also remark that 'the opposite distortion which would be expected in CoF_{2} does not seem to occur'. In fact there is a slight indication that this opposite distortion is occurring in $\mathrm{CoF}_{2}\left(d^{7}\right)$. In $\mathrm{MnF}_{2}, \mathrm{NiF}_{2}$ and ZnF_{2}, which have no degeneracies in their electron configurations, the mean difference in equatorial and apical bond lengths (the bond-delta) is $-0.034 \AA$ (Fig. 3). The difference between -0.034 and $-0.022 \AA\left(\right.$ for CoF_{2}) is possibly significant and shows that in CoF_{2} there is a tendency to a distortion opposite to the one observed in FeF_{2}, since the bonddelta is smaller than for the 'spherical' ions Mn, Ni and Zn , while in FeF_{2} the bond-delta is larger than in $\mathrm{MnF}_{2}, \mathrm{NiF}_{2}$ and ZnF_{2}. Vanadium difluoride (Table 6) has not been considered here because the determina-

Table 6. Rutile-type compounds: $c / a, x$, bond lengths, bond angle
The mean distance (A-B) m_{m} has been calculated using $x_{m}=\frac{1}{4}+\left(c^{2} / 8 a^{2}\right)$.

$\underset{\mathrm{AB}_{2}}{\text { Compound }}$	c/a	$x_{\text {exp }}$	(A-B) equatorial (\AA	(A-B) ${ }_{2}$ apical (Å)	$\underset{(\AA)}{(\mathrm{A}-\mathrm{B})_{m}}$	$\underset{\left({ }^{\circ}\right)}{\mathrm{B}-\mathrm{A}}$	Reference
SiO_{2}	0.63769	$0 \cdot 3062$ (13)	1.757 (5)	1.810 (8)	1.778	$81 \cdot 4$ (4)	a, b
TiO_{2}	$0 \cdot 64408$	0.30479 (10)	$1 \cdot 9485$ (5)	1.9800 (9)	$1 \cdot 9610$	81.21 (4)	c
VO_{2}	$0 \cdot 62605$	$0 \cdot 3026$ (3)	1.921 (1)	1.933 (1)	1.926	84.17 (6)	d
CrO_{2}	$0 \cdot 65974$	$0 \cdot 3026$ (3)	1.9096 (7)	1.8910 (10)	1.902	80.48 (5)	e
MnO_{2}	0.65321	$0 \cdot 30515$ (11)	1.8795 (2)	1.8981 (3)	1.8868	80.31 (2)	f, g
GeO_{2}	$0 \cdot 65094$	$0 \cdot 3059$ (2)	1.872 (1)	1.902 (1)	$1 \cdot 884$	$80 \cdot 3$ (1)	a, h
RuO_{2}	$0 \cdot 69160$	$0 \cdot 3058$ (16)	1.984 (6)	1.942 (10)	1.968	$76 \cdot 9$ (4)	a
SnO_{2}	0.67254	$0 \cdot 3071$ (13)	2.052 (5)	2.057 (9)	2.054	78.1 (4)	a, h
OsO_{2}	$0 \cdot 70749$	0.3081 (20)	2.006 (8)	1.962 (13)	1.990	75.0 (5)	
PbO_{2}	$0 \cdot 68322$	$0 \cdot 309$ (4)	$2 \cdot 16$ (3)	$2 \cdot 17$ (4)	$2 \cdot 161$	$76 \cdot 4$ (20)	k, h
MgF_{2}	$0 \cdot 66040$	$0 \cdot 30293$ (6)	1.9968 (1)	1.9798 (2)	1.9902	80.33 (1)	f, h
$\mathrm{VF}_{2}{ }^{\text {a }}$	$0 \cdot 67772$	$0 \cdot 308$ (1)	2.083 (3)	2.090 (4)	2.085	77.4 (2)	l, m
MnF_{2}	0.67929	$0 \cdot 3053$ (12)	$2 \cdot 131$ (6)	2.104 (9)	2.121	78.1 (4)	a, h
FeF_{2}	$0 \cdot 70502$	$0 \cdot 3010$ (8)	$2 \cdot 118$ (4)	1.998 (6)	2.072	$77 \cdot 2$ (2)	a, h
CoF_{2}	0.67670	$0 \cdot 3052$ (8)	2.049 (3)	2.027 (5)	2.040	78.3 (2)	a, h
NiF_{2}	$0 \cdot 66321$	$0 \cdot 3012$ (13)	2.022 (6)	1.981 (9)	2.006	80.6 (4)	a, h
ZnF_{2}	$0 \cdot 66609$	$0 \cdot 3024$ (16)	2.046 (7)	2.012 (10)	2.033	80.0 (5)	a, h
PdF_{2}	$0 \cdot 68382$	$0 \cdot 310$ (3)	$2 \cdot 16$ (2)	$2 \cdot 17$ (3)	$2 \cdot 162$	$76 \cdot 3$ (15)	n

(a) Baur \& Khan (1971). (b) Chao, Fahey, Littler \& Milton (1962). (c) Abrahams \& Bernstein (1971). (d) McWhan, Marezio, Remeika \& Dernier (1974). (e) Porta, Marezio, Remeika \& Dernier (1972). (f) This work. (g) Shannon, private communication. (h) Naidu (1966). (i) Boman (1970a). (j) Boman (1970b). (k) Leciejewicz \& Padlo (1962). (l) Lau et al. (1969). (m) Shafer (1969), (n) Bartlett \& Maitland (1958).
tion is reported only in an abstract (Lau, Stout, Koehler \& Child, 1969).
The bond-deltas for the main group oxides diminish with increasing bond length and atomic number (Fig. 4). However, in this case the apical distances are longer than the equatorial distances. No theory is available which could help to interpret the detailed geometry of the main group oxides. If we accept the bond-deltas of the main group oxides with completely filled d shells and the smooth curve $\mathrm{SiO}_{2}-\mathrm{GeO}_{2}-$ $\mathrm{SnO}_{2}-\mathrm{PbO}_{2}$ in Fig. 1 as the normal geometry of rutiletype oxides then TiO_{2} and MnO_{2} are close to this normal behaviour, while $\mathrm{VO}_{2}, \mathrm{CrO}_{2}, \mathrm{RuO}_{2}$ and OsO_{2} deviate from it. The more 'normal' behaviour of TiO_{2} and MnO_{2} can be rationalized because they do not have degeneracies in their d-electron distribution. However both VO_{2} and CrO_{2} are showing the 'wrong' type of distortion. According to Dunitz \& Orgel (1960) the octahedron in $\mathrm{VO}_{2}\left(d^{1}\right)$ should be compressed while in $\mathrm{CrO}_{2}\left(d^{2}\right)$ it should be elongated. Actually, however, the reverse is true (Fig. 5). This may be possibly connected with the observation of metallic conductivity in some of the rutile-type oxides, namely $\mathrm{VO}_{2}, \mathrm{CrO}_{2}, \mathrm{MnO}_{2}, \mathrm{RuO}_{2}$ and OsO_{2} among those mentioned here (Rogers et al., 1969).

I thank Dr A. A. Khan for the collection of the data; Dr R. D. Shannon for the crystal of MnO_{2}, for useful discussions and for a critical reading of the manuscript; the Computer Center of the University of Illinois, Chicago, for computer time.

References

Abrahams, S. C. \& Bernstein, J. L. (1967). J. Chem. Phys. 46, 3776-3782.
Abrahams, S. C. \& Bernstein, J. L. (1971). J. Chem. Phys. 55, 3206-3211.
Bartlett, N. \& Maitland, R. (1958). Acta Cryst. 11, 747-748.
Baur, W. H. (1956). Acta Cryst. 9, 515-520.
Baur, W. H. (1961). Acta Cryst. 14, 209-213.
Baur, W. H. (1970). Trans. Amer. Cryst. Assoc. 6, 129-155.
Baur, W. H. \& Khan, A. A. (1970). Acta Cryst. B26, 1584-1596.
Baur, W. H. \& Khan, A. A. (1971). Acta Cryst. B27, 21332139.

Billy, C. \& Haendler, H. (1957). J. Amer. Chem. Soc. 79, 1049-1051.
Boman, C. -E. (1970a). Acta Chem. Scand. 24, 116-122.
Boman, C. -E. (1970b). Acta Chem. Scand. 24, 123-128.
Brenet, J. (1950). Bull. Soc. Fr. Minér. Crist. 73, 409-424.
Chao, E. C. T., Fahey, J. Y., Littler, J. \& Milton, D. J. (1962). J. Geophys. Res. 67, 419-421.

Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-397.
Dunitz, J. D. \& Orgel, L. E. (1960). Advanc. Inorg. Chem. Radiochem. 2, 1-60.

Fig. 4. Equatorial (solid line) and apical (dashed line) bond lengths of rutile-type oxides of Group IV with increasing atomic number.

Fig. 5. Equatorial (solid line) and apical (dashed line) bond lengths of rutile-type oxides of the first transition-metal series as a function of the number of d electrons.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Jack, K. H. \& Maitland, R. (1957). Proc. Chem. Soc. p. 232.
Lau, H. Y., Stout, J. W., Koehler, W. C. \& Child, H. R. (1969). J. Appl. Phys. 40, 1136.

Leciejewicz, J. \& Padlo, I. (1962). Naturwissenschaften, 49, 373-374.
Naidu, S. V. N. (1966). X-ray Studies on Rutile-Type Compounds. Ph. D. Thesis. Osmania Univ.
Niederauer, K. \& Göttlicher, S. (1970). Z. angew. Phys. 29, 16-21.
McWhan, D. B., Marezio, M., Remeika, J. P. \& Dernier, P. D. (1974). Phys. Rev. B10, 490-495.

Porta, P., Marezio, M., Remeika, J. P. \& Dernier, P. D. (1972). Mater. Res. Bull. 7, 157-162, 355-356.

Rogers, D. B., Shannon, R. D., Sleight, A. W. \& Gillson, J. L. (1969). Inorg. Chem. 8, 841-849.
Shafer, M. W. (1969). Mater. Res. Bull. 4, 905-912.
Vegard, L. (1916). Phil. Mag. 32, [6], 65-96.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

[^0]: * Tables 2 and 3 have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31650 (3 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

